Metric Reasonning About λ -Terms: The Affine Case

Raphaëlle Crubillé

FOCUS Working Group

- ► Context equivalence [Morris1968]:
 - ▶ Two terms *M* and *N* are context equivalent if their observable behavior is the same in any context.

- ► Context equivalence [Morris1968]:
 - ▶ Two terms *M* and *N* are context equivalent if their **observable behavior** is the same in **any** context.
 - ▶ Proving that two programs are **not** equivalent is relatively easy: just find **a** context that separates them.

- ► Context equivalence [Morris1968]:
 - ▶ Two terms *M* and *N* are context equivalent if their observable behavior is the same in any context.
 - ▶ Proving that two programs are **not** equivalent is relatively easy: just find **a** context that separates them.
 - ▶ Proving that two program are indeed **equivalent**, on the other hand, can be quite complicated.

- ► Context equivalence [Morris1968]:
 - ▶ Two terms *M* and *N* are context equivalent if their observable behavior is the same in any context.
 - ▶ Proving that two programs are **not** equivalent is relatively easy: just find **a** context that separates them.
 - ▶ Proving that two program are indeed **equivalent**, on the other hand, can be quite complicated.
- ▶ Other equivalence notion: Bisimilarity

Observables

- ▶ **Deterministic** setting:
 - ▶ Operationnal Semantics: $M \Downarrow V$.
 - ▶ Observables: Termination:

$$Obs(M) = \begin{cases} 1 \text{ if } M \downarrow \\ 0 \text{ if } M \uparrow \end{cases} \in \{0, 1\}$$

- ▶ **Probabilistic** setting:
 - ▶ Operationnal Semantics: $\llbracket M \rrbracket \in \text{Distr}(\mathbf{V})$.
 - Observables: Convergence Probability.

$$Obs(M) = \sum_{V \text{ a value}} [\![M]\!](V) \qquad \in [0,1]$$

Syntax and Operational Semantics of Λ_{\oplus} [DLZorzi2012]

- ► Terms: $M, N ::= x \mid \lambda x.M \mid MM \mid M \oplus M;$
- ▶ Values: $V \in \mathbf{V} ::= \lambda x.M$;
- ▶ Approximation (Big-Step) Semantics:
 - ▶ $M \Downarrow \mathcal{D}$, where $\mathcal{D} : \mathbf{V} \to [0,1]$ sub-probability distribution.
 - ▶ Approximation from below: only finite distributions.

$$\begin{array}{ccc} \hline M \Downarrow \emptyset & \hline V \Downarrow \{V^1\} & \frac{M \Downarrow \mathscr{D} & N \Downarrow \mathscr{E}}{M \oplus N \Downarrow \frac{1}{2}\mathscr{D} + \frac{1}{2}\mathscr{E}} \\ \\ & \underbrace{M \Downarrow \mathscr{D} & \{P\{x/N\} \Downarrow \mathscr{F}_P\}_{\lambda x. P \in \mathsf{S}(\mathscr{D})}}_{MN \Downarrow \sum_{\lambda x. P \in \mathsf{S}(\mathscr{D})} \mathscr{D}(\lambda x. P) \cdot \mathscr{F}_P} \end{array}$$

▶ **Semantics**: $\llbracket M \rrbracket = \sup_{M \downarrow \mathscr{D}} \mathscr{D}$;

Syntax and Operational Semantics of Λ_{\oplus} [DLZorzi2012]

- ► Terms: $M, N ::= x \mid \lambda x.M \mid MM \mid M \oplus M;$
- ▶ Values: $V \in \mathbf{V} ::= \lambda x.M$;
- ▶ Approximation (Big-Step) Semantics:
 - ▶ $M \Downarrow \mathcal{D}$, where $\mathcal{D} : \mathbf{V} \to [0,1]$ sub-probability distribution.
 - ▶ Approximation from below: only finite distributions.

$$\begin{array}{c|c} \hline M \Downarrow \emptyset & \hline V \Downarrow \{V^1\} & \hline M \Downarrow \mathscr{D} & N \Downarrow \mathscr{E} \\ \hline M \oplus N \Downarrow \frac{1}{2}\mathscr{D} + \frac{1}{2}\mathscr{E} \\ \hline M \Downarrow \mathscr{D} & \{P\{x/N\} \Downarrow \mathscr{F}_P\}_{\lambda x. P \in \mathsf{S}(\mathscr{D})} \\ \hline M N \Downarrow \sum_{\lambda x. P \in \mathsf{S}(\mathscr{D})} \mathscr{D}(\lambda x. P) \cdot \mathscr{F}_P \end{array}$$

- ▶ **Semantics**: $\llbracket M \rrbracket = \sup_{M \downarrow \mathscr{D}} \mathscr{D}$;
- ► Variations: Small-Step Semantics, Call-by-value Evaluation.

Terms

Terms Values

Terms	Values
M	
N	
L	
÷	

Terms	Values
M	V
N	W
L	U
<u>:</u>	÷

Terms Values

M

Terms Values

 $M \xrightarrow{\quad eval \quad } V$

Terms Values
$$M \xrightarrow{eval} V$$

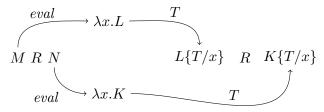
$$\lambda x.N$$

Terms Values
$$M \xrightarrow{eval} V$$

$$N\{L/x\} \xleftarrow{L} \lambda x.N$$

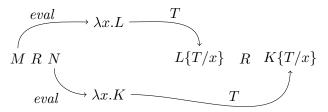
Applicative Bisimulation [Abramsky93]: Deterministic Case

Simulation



Applicative Bisimulation [Abramsky93]: Deterministic Case

► Simulation



- ► Similarity: union of all simulations, denoted ≾;
- ▶ **Bisimilarity**: union of all bisimulations, denoted \sim .

Theorem

 $M \equiv N \text{ iff } M \sim N.$

Applicative Bisimulation for a Probabilistic Language (1): Trace Equivalence

The weighted **Trace** LTS:

- ▶ states: Distr (**V**)
- ▶ labels: @Terms
- weight function: $w(\mathcal{D}) = \sum_{V} \mathcal{D}(V)$
- ► Transition relation:

Definition

 $M \equiv^{tr} N$ if $\llbracket M \rrbracket R \llbracket N \rrbracket$ when R is a bisimulation with respect to the trace LTS such that $\mathscr{D} R \mathscr{E} \Rightarrow w(\mathscr{D}) = w(\mathscr{E})$.

Alternative Equivalente Definition: Evaluation Contexts

► Traces: contexts having a nice peculiar form

$$s ::= \epsilon \mid @V \cdot s.$$

- ▶ Success probability of a trace: Pr(M, s).
 - $ightharpoonup s \longrightarrow \mathcal{C}_s$:

$$Pr(M,s) = \sum_{V} [\![\mathcal{C}_s[M]]\!](V)$$

▶ Examples: $M = \lambda x.(I \oplus \Omega) \oplus \Omega$.

$$s = \epsilon$$
 $C_s = [\cdot]$ $Pr(M, s) = \frac{1}{2}$
$$t = @I \cdot \epsilon$$
 $C_t = [\cdot]I$ $Pr(M, t) = \frac{1}{4}$

- ► Context equivalence versus trace equivalence:
 - ► Sound and complete for CBN [].
 - ▶ Unsound for CBV.

Alternative Equivalente Definition: Evaluation Contexts

► Traces: contexts having a nice peculiar form

$$s := \epsilon \mid @V \cdot s.$$

• Success probability of a trace: Pr(M, s).

Sucess Probability of a Trace.

- $ightharpoonup s = \epsilon \longrightarrow \mathcal{C}_s = [\cdot]$

$$t = @I \cdot \epsilon$$
 $\mathcal{C}_t = [\cdot]I$ $Pr(M, t) = \frac{1}{4}$

- ► Context equivalence versus trace equivalence:
 - Sound and complete for CBN [].
 - Unsound for CBV.

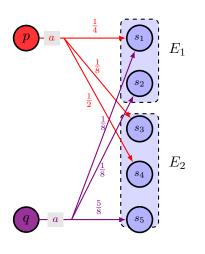
Applicative Bisimulation for a Probabilistic Language (2): Probabilistic Bisimulation

Labelled Markov Chain (LMC): a triple $\mathcal{M} = (\mathcal{S}, \mathcal{L}, \mathcal{P})$, where

- \triangleright S is a countable set of *states*;
- \triangleright \mathcal{L} is a set of *labels*;
- ▶ \mathcal{P} is a transition probability matrix, i.e., a function $\mathcal{P}: \mathcal{S} \times \mathcal{L} \times \mathcal{S} \rightarrow [0,1]$ such that for every state s and for every label l, $\mathcal{P}(\mathcal{S}, l, t) = \sum_{t \in \mathcal{S}} \mathcal{P}(s, l, t) \leq 1$;

Bisimilarity (probabilistic case)

Let $(S, \mathcal{L}, \mathcal{P})$ be a LMC (Labelled Markov Chain).



Bisimulation: R such that

- ightharpoonup R equivalence relation on S.
- ▶ $(p,q) \in R \Rightarrow$ for every equivalence class E, $a \in \mathcal{L}$,

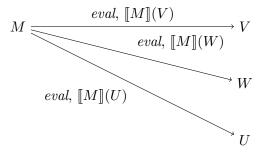
$$\sum_{s \in E} \mathcal{P}(p, a, s) = \sum_{s \in E} \mathcal{P}(q, a, s)$$

.

Terms Values

M

Terms Values



:

Terms Values $\lambda x.N$

Terms Values $N\{W/x\} \longleftarrow \begin{array}{c} W, \ 1 \\ & \lambda x. N \end{array}$

Context Equivalence vs. Bisimulation

- ► Contexts:
 - $\mathcal{C} ::= [\ \, \big| \ \, \lambda x.\mathcal{C} \ \, \big| \ \, \mathcal{C}M \ \, \big| \ \, M\mathcal{C} \ \, \big| \ \, M \oplus \mathcal{C} \ \, \big| \ \, \mathcal{C} \oplus M.$
- ▶ Context Equivalence: $M \equiv N$ iff for every context C it holds that $\sum [\![C[M]]\!] = \sum [\![C[N]]\!]$.

Theorem

 \sim is included in \equiv .

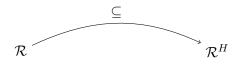
Lemma

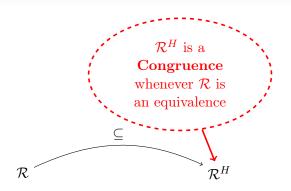
 \sim is a congruence.

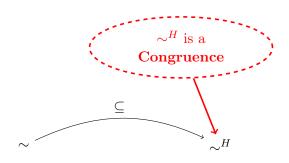
- $ightharpoonup M \sim N \implies C[M] \sim C[N]$
- ► Howe's technique.

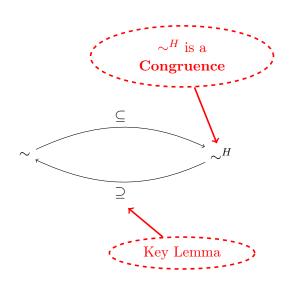
 \mathcal{R}

 \mathcal{R}^H









Full Abstraction?

- \triangleright ~ is a **sound** methodology for program equivalence.
- ► Is it also **complete**?
- ► **CBN**: **No** [DLSA2014]
 - ► Counterexample:

$$M = \lambda x. \lambda y. (\Omega \oplus I);$$
 $N = \lambda x. (\lambda y. \Omega) \oplus (\lambda y. I).$

Full Abstraction?

- \triangleright ~ is a **sound** methodology for program equivalence.
- ► Is it also **complete**?
- ► **CBN**: **No** [DLSA2014]
 - ► Counterexample:

$$M = \lambda x.\lambda y.(\Omega \oplus I); \qquad N = \lambda x.(\lambda y.\Omega) \oplus (\lambda y.I).$$

▶ Of course, $I \nsim \Omega$ and as a consequence

$$\lambda y.\Omega \nsim \lambda y.I \nsim \lambda y.(\Omega \oplus I) \implies M \nsim N.$$

Full Abstraction?

- \triangleright ~ is a **sound** methodology for program equivalence.
- ► Is it also **complete**?
- ► **CBN**: **No** [DLSA2014]
 - ► Counterexample:

$$M = \lambda x. \lambda y. (\Omega \oplus I);$$
 $N = \lambda x. (\lambda y. \Omega) \oplus (\lambda y. I).$

▶ Of course, $I \nsim \Omega$ and as a consequence

$$\lambda y.\Omega \nsim \lambda y.I \nsim \lambda y.(\Omega \oplus I) \implies M \nsim N.$$

- ▶ On the other hand, $M \equiv N$.
 - ▶ We need a CIU-Theorem for that.

Full Abstraction?

- \triangleright ~ is a **sound** methodology for program equivalence.
- ► Is it also **complete**?
- ► **CBN**: **No** [DLSA2014]
 - ► Counterexample:

$$M = \lambda x. \lambda y. (\Omega \oplus I);$$
 $N = \lambda x. (\lambda y. \Omega) \oplus (\lambda y. I).$

• Of course, $I \not\sim \Omega$ and as a consequence

$$\lambda y.\Omega \nsim \lambda y.I \nsim \lambda y.(\Omega \oplus I) \implies M \nsim N.$$

- On the other hand, $M \equiv N$.
 - ▶ We need a CIU-Theorem for that.
- ► **CBV**: **Yes**[CDL2014]

Theorem

 \equiv is fully abstract

Proof:

- ▶ Bisimulation in a LMC is characterized by a test language: $t := \omega \mid a \cdot t \mid < t, t>$;
- ► Tests can be simulated by CBV-contexts.

Our Neighborhood

 \blacktriangleright Λ , where we observe **convergence**

	\sim \subseteq \equiv	\equiv \subseteq \sim	$\preceq \subseteq \leq$	\leq \subseteq \lesssim
CBN	√	✓	√	✓
CBV	✓	✓	✓	✓

[Abramsky1990,Howe1993]

▶ Λ_{\oplus} with nondeterministic semantics, where we observe **convergence**, in its **may** or **must** flavors.

	\sim \subseteq \equiv	\equiv \subseteq \sim	$\preceq \subseteq \leq$	\leq \subseteq \lesssim
CBN	✓	×	✓	×
CBV	✓	×	✓	×

[Ong1993,Lassen1998]

Summing up equivalence result

	\ 	\equiv \subseteq \sim	$\preceq \subseteq \leq$	> ∩ ?\
CBN	\checkmark	×	√	×
CBV	√	√	√	×

Toward a notion of distance

► Two very similar probabilistic programs:

$$\begin{aligned} M &= \Omega ::= (\lambda x.xx)(\lambda x.xx); \\ N &= \Omega \oplus^{\epsilon} \lambda x.x & \text{where } \epsilon \ll 1. \end{aligned}$$

- ▶ We want to express the fact that M and N are **not** equivalent, but have a very **similar** behaviour.
- ► Context Distance:

$$\delta^{\text{ctx}}(M, N) = \sup_{\mathcal{C} \text{ a context}} |Obs(\mathcal{C}[M]) - Obs(\mathcal{C}[N])|$$

▶ M and N are at context distance ϵ .

The Trivialization Phaenomenon

► Two other very similar programs:

$$\begin{split} M &= I ::= \lambda x.x \\ N &= I \oplus^{\epsilon} \Omega \qquad \text{with } \epsilon \ll 1 \end{split}$$

• We can construct a sequence of **amplification contexts** C_n such that:

$$Obs(\mathcal{C}_n[M]) = 1$$
 $Obs(\mathcal{C}_n[N]) = (1 - \varepsilon)^n$
 $\mathcal{C}_n = (\lambda x. \underbrace{(xI) \cdots (xI)}_n)[\cdot]$

- \blacktriangleright M and N are at context distance 1.
- ▶ In a language with **copying capabilities**, the contextual metric is itself too discriminating.

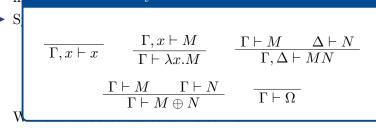
- ► Every function uses its argument at most once.
- ▶ Low expressivity, but interesting structure of contextual metric.
- ► Syntax of the calculus:

$$M ::= x \ \big| \ \lambda x.M \ \big| \ MM \ \big| \ M \oplus M \ \big| \ \Omega$$

$$\big| \ \text{let} \ \langle x,y \rangle = M \ \text{in} \ M \ \big| \ \langle M,M \rangle.$$

We restrict ourselves to affine terms.

- ▶ Every function uses its argument at most once.
- Low expressivity, but interesting structure of contextual Rules for Affinity–Selection:



- ► Every function uses its argument at most once.
- ▶ Low expressivity, but interesting structure of contextual metric.
- ► Syntax of the calculus:

$$M ::= x \ \big| \ \lambda x.M \ \big| \ MM \ \big| \ M \oplus M \ \big| \ \Omega$$

$$\big| \ \text{let} \ \langle x,y \rangle = M \ \text{in} \ M \ \big| \ \langle M,M \rangle.$$

We restrict ourselves to affine terms.

- ► Every function uses its argument at most once.
- ▶ Low expressivity, but interesting structure of contextual metric.
- ► Syntax of the calculus:

$$M ::= x \ \big| \ \lambda x.M \ \big| \ MM \ \big| \ M \oplus M \ \big| \ \Omega$$

$$\big| \ \text{let} \ \langle x,y \rangle = M \ \text{in} \ M \ \big| \ \langle M,M \rangle.$$

We restrict ourselves to affine terms.

- ▶ We define an operationnal semantics.
- ▶ Values: $V ::= \lambda x.M \mid \langle M, M \rangle$ Result of a computation: **sub-distribution** of values: $M \Downarrow \llbracket M \rrbracket$

- ► Context: affine term with a hole.
- ► Context Distance:

$$\delta^{\mathrm{ctx}}(M,N) = \sup_{\mathcal{C} \text{ a context}} | \sum_{V} [\![\mathcal{C}[M]]\!](V) - \sum_{V} [\![\mathcal{C}[N]]\!](V) |.$$

- ► Context: affine term with a hole.
- ► Context Distance:

$$\delta^{\mathrm{ctx}}(M,N) = \sup_{\mathcal{C} \text{ a context}} | \sum_{V} [\![\mathcal{C}[M]]\!](V) - \sum_{V} [\![\mathcal{C}[N]]\!](V) |.$$

▶ The Context Distance is a pseudo-metric.

- ► Context: affine term with a hole.
- Context Distance:

Pseudo-Metric on Λ_{\oplus} :

 $\mu: \Lambda_{\oplus} \times \Lambda_{\oplus} \to [0,1]$ such that:

- Symmetry; ▶
 - $\mu(M,M) = 0;$
 - ► Triangular inequality.

- ► Context: affine term with a hole.
- ► Context Distance:

$$\delta^{\mathrm{ctx}}(M,N) = \sup_{\mathcal{C} \text{ a context}} | \sum_{V} [\![\mathcal{C}[M]]\!](V) - \sum_{V} [\![\mathcal{C}[N]]\!](V) |.$$

▶ The Context Distance is a pseudo-metric.

- ► Context: affine term with a hole.
- ► Context Distance:

$$\delta^{\mathrm{ctx}}(M,N) = \sup_{\mathcal{C} \text{ a context}} | \sum_{V} \llbracket \mathcal{C}[M] \rrbracket(V) - \sum_{V} \llbracket \mathcal{C}[N] \rrbracket(V) |.$$

- ▶ The Context Distance is a pseudo-metric.
- ► Running examples:

$$M_1 = \Omega \oplus I \qquad N_1 = \Omega$$

$$M_2 = (\lambda x.\Omega) \oplus (\lambda x.I) \qquad N_2 = \lambda x.(\Omega \oplus I)$$

$$M_3 = \langle \lambda x.I, \lambda x.I \rangle \qquad N_3 = \langle \lambda x.(I \oplus \Omega), \lambda x.(I \oplus \Omega) \rangle.$$

- ► Context: affine term with a hole.
- Context distance for $M_1 = \Omega \oplus I$ and $N_1 = \Omega$ is $\frac{1}{2}$
 - $\delta^{\text{ctx}}(M_1, N_1) \ge \frac{1}{2}$

-]
- **▶**]

- ► Context: affine term with a hole.
- Context distance for $M_1 = \Omega \oplus I$ and $N_1 = \Omega$ is $\frac{1}{2}$
 - $\delta^{\text{ctx}}(M_1, N_1) \ge \frac{1}{2}$
 - $| \sum_{V} [\![\mathcal{C}[M_1]]\!](V) \sum_{V} [\![\mathcal{C}[N_1]]\!](V) | \leq \frac{1}{2} :$
- **▶** ']
- ► F

Proof: It holds that:

$$\begin{array}{lll} \llbracket \mathcal{C}[M_1] \rrbracket & = & \sum p_i \cdot \mathscr{D}_i; \\ \llbracket \mathcal{C}[N_1] \rrbracket & = & \sum p_i \cdot \mathscr{E}_i; \\ \end{array}$$

where

- either $\sum_{V} \mathscr{D}_i(V) \leq 1/2$ and $\mathscr{E}_i = \emptyset$,
- either $\mathcal{D}_i = \{\mathcal{E}_i[M_1]^1\}$ and $\mathcal{E}_i = \{\mathcal{F}_i[N_1]^1\}$.

- ► Context: affine term with a hole.
- ► Context Distance:

$$\delta^{\mathrm{ctx}}(M,N) = \sup_{\mathcal{C} \text{ a context}} | \sum_{V} \llbracket \mathcal{C}[M] \rrbracket(V) - \sum_{V} \llbracket \mathcal{C}[N] \rrbracket(V) |.$$

- ▶ The Context Distance is a pseudo-metric.
- ► Running examples:

$$M_1 = \Omega \oplus I \qquad N_1 = \Omega$$

$$M_2 = (\lambda x.\Omega) \oplus (\lambda x.I) \qquad N_2 = \lambda x.(\Omega \oplus I)$$

$$M_3 = \langle \lambda x.I, \lambda x.I \rangle \qquad N_3 = \langle \lambda x.(I \oplus \Omega), \lambda x.(I \oplus \Omega) \rangle.$$

- ► Context: affine term with a hole.
- Context Distance:

$$\delta^{\mathrm{ctx}}(M,N) = \sup_{\mathcal{C} \text{ a context}} | \sum_{V} \llbracket \mathcal{C}[M] \rrbracket(V) - \sum_{V} \llbracket \mathcal{C}[N] \rrbracket(V) |.$$

- ▶ The Context Distance is a pseudo-metric.
- ► Running examples:

$$M_1 = \Omega \oplus I \qquad N_1 = \Omega$$

$$M_2 = (\lambda x.\Omega) \oplus (\lambda x.I) \qquad N_2 = \lambda x.(\Omega \oplus I)$$

$$M_3 = \langle \lambda x.I, \lambda x.I \rangle \qquad N_3 = \langle \lambda x.(I \oplus \Omega), \lambda x.(I \oplus \Omega) \rangle.$$

▶ Unniversal quantification over all contexts ⇒ Difficult to actually know distance between terms.

Trace Distance

- ▶ Generalisation of trace equivalence
- ▶ Generalisation of the Trace LTS: labels =

- ▶ R_{ε} : The biggest bisimulation R on this LTS such that $\mathscr{D}R\mathscr{E} \Rightarrow |w(\mathscr{D}) w(\mathscr{E})| \leq \epsilon$.
- ▶ Trace Distance: $\delta^{tr}(M, N) = \inf\{\epsilon \mid \{M^1\}R_{\epsilon}\{N^1\}\}$
- ► Characterisation by traces:

$$\delta^{\mathrm{tr}}(M,N) = \sup_{s \text{ a trace}} |Pr(M,s) - Pr(N,s)|$$

Theorem (Non-expansiveness)

For every M, N, and for every context C:

$$\delta^{tr}(\mathcal{C}[M], \mathcal{C}[N]) \le \delta^{tr}(M, N).$$

Theorem (Non-expansiveness)

For every M, N, and for every context C:

$$\delta^{tr}(\mathcal{C}[M], \mathcal{C}[N]) \le \delta^{tr}(M, N).$$

Theorem (Full Abstraction)

Trace distance and context distance coincide.

Theorem (Non-expansiveness)

For every M, N, and for every context C:

$$\delta^{tr}(\mathcal{C}[M], \mathcal{C}[N]) \le \delta^{tr}(M, N).$$

Theorem (Full Abstraction)

Trace distance and context distance coincide.

Proof:

- ► Adequacy: $\delta^{tr}(M, N) \ge |\operatorname{Obs}(M) \operatorname{Obs}(N)|$.
- Soundness: $\delta^{\text{ctx}}(M, N) \leq \delta^{\text{tr}}(M, N)$.
 - $\begin{array}{ll} \text{Proof:} & \begin{array}{ll} \text{Adequacy} \\ \text{Non-Expansiveness} \end{array} \end{array} \right\} \Longrightarrow \text{ Soundness }.$
- ▶ Completness: $\delta^{\text{tr}}(M, N) \leq \delta^{\text{ctx}}(M, N)$. Proof: Every trace can be simulated by a context.

Theorem (Non-expansiveness)

For every M, N, and for every context C:

Proof Of Non-Expansiveness Theorem

- ▶ Plain induction on contexts fails.
- ▶ We need an operationnal semantics for terms in contexts:

$$\mathscr{D} \stackrel{s}{\Rightarrow}_{\mathbf{C} \times \mathbf{P}} \mathscr{E}$$

for $\mathscr{D}, \mathscr{E} \in \text{Distr} (\text{Terms} \times \mathbf{C})$

• Stronger notion of proximity: $\mathcal{D} \Delta_{\varepsilon} \mathscr{E}$

$$\begin{array}{c}
\mathscr{D} \Delta_{\varepsilon} \mathscr{E} \\
 \mathscr{D} \overset{s}{\Rightarrow}_{\mathbf{C} \times \mathbf{P}} \mathscr{F} \\
\mathscr{E} \overset{s}{\Rightarrow}_{\mathbf{C} \times \mathbf{P}} \mathscr{G}
\end{array} \right\} \Longrightarrow \mathscr{F} \Delta_{\varepsilon} \mathscr{G}$$

Th Tro

Trace Distance on Examples

• $M_1 = \Omega \oplus I$ and $N_1 = \Omega$

For every trace s:

- $Pr(M_1, s) = \frac{1}{2} \cdot Pr(I, s)$
- $Pr(N_1, s) = 0$

The trace distance between M_1 and N_1 is $\frac{1}{2}$.

Trace Distance on Examples

• $M_1 = \Omega \oplus I$ and $N_1 = \Omega$

For every trace s:

$$Pr(M_1, s) = \frac{1}{2} \cdot Pr(I, s)$$

$$Pr(N_1, s) = 0$$

The trace distance between M_1 and N_1 is $\frac{1}{2}$.

- ▶ $M_2 = (\lambda x.\Omega) \oplus (\lambda x.I)$ and $N_2 = \lambda x.(\Omega \oplus I)$.
 - ► Traces don't take branching into account (evaluation context).
 - For every trace s, Pr(M,s) = Pr(N,s).
 - ▶ The trace distance between M_2 and N_2 is 0.

Trace Distance on Examples

▶ $M_1 = \Omega \oplus I$ and $N_1 = \Omega$

For every trace s:

$$Pr(M_1, s) = \frac{1}{2} \cdot Pr(I, s)$$

$$Pr(N_1, s) = 0$$

The trace distance between M_1 and N_1 is $\frac{1}{2}$.

- ▶ $M_2 = (\lambda x.\Omega) \oplus (\lambda x.I)$ and $N_2 = \lambda x.(\Omega \oplus I)$.
 - ► Traces don't take branching into account (evaluation context).
 - For every trace s, Pr(M, s) = Pr(N, s).
 - ▶ The trace distance between M_2 and N_2 is 0.
- ▶ $M_3 = \langle \lambda x.I, \lambda x.I \rangle$ and $N_3 = \langle \lambda x.(I \oplus \Omega), \lambda x.(I \oplus \Omega) \rangle$.
 - We have to consider traces of the form $\otimes L \cdot \epsilon$.
 - ▶ Not simpler than contextual distance.

- Generalization of bisimilarity to metrics.
- ▶ We define a Labelled Markov Chain: the Λ_{\oplus} LMC.
- ightharpoonup Operator F on metrics [DGJP2002]:

$$F(\mu)(s,t) = \sup_{a} \{\overline{\mu}(\mathscr{D},\mathscr{E}) \mid a \in Act, \, s \overset{a}{\to} \mathscr{D}, \, t \overset{a}{\to} \mathscr{E} \}$$

Proposition

F has a greatest fixpoint, called bisimulation distance: δ^b

- Generalization of bisimilarity to metrics.
- ▶ We define a Labelled Markov Chain: the Λ_{\oplus} LMC.
- \triangleright Operator F on metrics [DGJP2002]:

$$F(\mu)(s,t) = \sup_{a} \{ \overline{\mu}(\mathscr{D},\mathscr{E}) \mid a \in Act, \ s \xrightarrow{a} \mathscr{D}, \ t \xrightarrow{a} \mathscr{E} \}$$

Proposition

F has a greatest fixpoint, called bisimulation distance: δ^b

Theorem

 δ^b is non-expansive, thus sound with respect to context distance.

- ▶ Generalization of bisimilarity to metrics.
- ▶ We define a Labelled Markov Chain: the Λ_{\oplus} LMC.
- \triangleright Operator F on metrics [DGJP2002]:

$$F(\mu)(s,t) = \sup_{a} \{ \overline{\mu}(\mathscr{D},\mathscr{E}) \mid a \in Act, \ s \overset{a}{\to} \mathscr{D}, \ t \overset{a}{\to} \mathscr{E} \}$$

Proposition

F has a greatest fixpoint, called bisimulation distance: δ^b

Theorem

 δ^b is non-expansive, thus sound with respect to context distance.

Proposition

 δ^b is not complete.

Proof: $\delta^{\rm b}(M_2,N_2)=\frac{1}{2}$. However, M_2 and N_2 are at context distance 0.

- ▶ Generalization of bisimilarity to metrics.
- ▶ We define a Labelled Markov Chain: the Λ_{\oplus} LMC.
- ightharpoonup Operator F on metrics [DGJP2002]:

Proof Of Non-Expansiveness Theorem

probabilistic and quantitative variation of Howe's method;

▶ uses Kantorovitch's duality in a crucial way.

Theorem

Pr

 δ^b is non-expansive, thus sound with respect to context distance.

Proposition

 δ^b is not complete.

Proof: $\delta^{\rm b}(M_2,N_2)=\frac{1}{2}.$ However, M_2 and N_2 are at context distance 0.

The Tuple Distance

Extending the Λ_{\oplus} -LMC:

- ▶ Goal: Simplifying the handling of pairs in the Λ_{\oplus} -LMC.
- ▶ States: sequences of values (tuples).

The Tuple Distance

Extending the Λ_{\oplus} -LMC:

- ▶ Goal: Simplifying the handling of pairs in the Λ_{\oplus} -LMC.
- ▶ States: sequences of values (tuples).
- ▶ Actions: unfoldⁱ | $@(\Gamma, V)^i$ with $i \in \mathbb{N}$, and $\Gamma \vdash V$.

$$\begin{array}{c} \underbrace{ \left([\langle M,N\rangle,U] \right)} & \underbrace{ \text{unfold}^1} \\ & \underbrace{ \left[[V,W,U] \right)} \\ & \underbrace{ \left[[\lambda x.M,W,U] \right)} & \underbrace{ \left[(\{x_2\},V)^1 \right]} \\ & \underbrace{ \left[[\lambda x.M,W,U] \right)} & \underbrace{ \left[[T,U] \right)} \\ \end{array}$$

► Tuple Distance:

$$\delta^{\mathrm{mul}}(M, N) = \sup_{s} |Pr([M], s) - Pr([N], s)|$$

Theorem

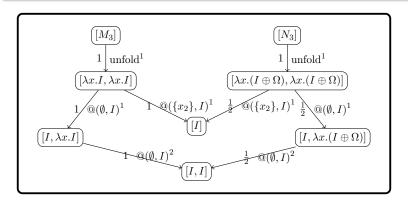
- \triangleright δ^{mul} is non-expansive.
- \triangleright δ^{mul} is fully abstract with respect to context distance.

Example for Tuple Distance

$$M_3 = \langle \lambda x.I, \lambda x.I \rangle$$
 and $N_3 = \langle \lambda x.(I \oplus \Omega), \lambda x.(I \oplus \Omega) \rangle$

Proposition

$$\delta^{mul}(M_3, N_3) = \frac{3}{4}$$



Conclusion

▶ Contribution:

- ► The first account of behavioural metrics in higher-order languages.
- ▶ Satisfactory proof techniques for pairs.

Conclusion

▶ Contribution:

- ► The first account of behavioural metrics in higher-order languages.
- Satisfactory proof techniques for pairs.

► Related Work:

- ▶ Metrics in probabilistic systems [DGJP02, ...]
- ▶ Metrics for process algebras [GT14]
- ▶ Higher-order probabilistic languages [JP89,EPT14, . . .]
 - ▶ Λ_{\oplus} as a LMC [DLSA14,CDL14]

Conclusion

▶ Contribution:

- ► The first account of behavioural metrics in higher-order languages.
- Satisfactory proof techniques for pairs.

Related Work:

- ▶ Metrics in probabilistic systems [DGJP02, . . .]
- ▶ Metrics for process algebras [GT14]
- ▶ Higher-order probabilistic languages [JP89,EPT14, . . .]
 - ▶ Λ_{\oplus} as a LMC [DLSA14,CDL14]

► Further Work:

- ▶ The Non-Affine Case: Extending the tuple LMC to a calculus with copying capabilities.
- Application to cryptography: computational indistinguishability.

Thank you.

Questions?